
Machinery Control System using Autonomous Agents
Hidehiko Wada

Yokogawa Electric Corporation
2-9-32 Naka-cho, Musashino-shi

Tokyo, 180-8750 JAPAN

Hidehiko_Wada@yokogawa.co.jp

Yuichi Sakuraba
Yokogawa Electric Corporation

2-9-32 Naka-cho, Musashino-shi
Tokyo, 180-8750, JAPAN

Yuiichi_Sakuraba@yokogawa.co.jp

Masako Negishi
Yokogawa Electric Corporation

2-9-32 Naka-cho, Musashino-shi
Tokyo, 180-8750, JAPAN

Masako_Negishi@yokogawa.co.jp

ABSTRACT

Flexibility will be one of the key features in future
manufacturing systems because the environments that
surround manufacturing systems are rapidly changing from
day to day. To satisfy this requirement, the hierarchical
systems used in previous manufacturing systems are not
enough because they cannot deal effectively with unexpected
situations. Moreover, a lot of software modules have to be
modified when a system is rebuilt to meet new requirements.
To achieve flexibility in manufacturing systems, the concept of
an autonomous decentralized system is useful. We introduce
some agents that work autonomously in the system to build
autonomous decentralized manufacturing systems.

In manufacturing systems using autonomous agents, the basic
concept should be based on a target product and on work
having some information moving around in the system. To
realize this concept, we introduce mobile agents called product
agents as data carriers. The product agents have target
product-related information involving manufacturing
procedures and data. Each product agent selects a target
machine to process and moves on processing machines or
controllers according to the specific procedures. The product
agents act as autonomous entities in the system.

To verify our proposed concept and architecture, we
developed a prototype system. This system was for the Shape
Deposition Manufacturing Laboratory of the Robotics
Institute at Carnegie Mellon University.

 In this paper, we describe our basic concept and the software
architecture of our proposed system and explain the prototype
system. Then, we include some discussion of our proposed and
developed system.

Keywords

Mobile Agent, Autonomous Decentralized Systems,
Manufacturing Control Systems.

1. INTRODUCTION
The environments that surround manufacturing systems are
rapidly changing because of various consumer needs, sudden
changes in market structure, and exchange rates that fluctuate
daily [1]. Manufacturing systems have some requirements in order
to cope with such drastic changes. These requirements are
allowing factories to expand globally, and are providing optimal
quality, cost, and on-time delivery of various products. In other
words, a manufacturing system that provides variable-type and
variable-volume production is needed. The flexibility to cope
with such new demands is strongly needed.

Flexibility here means, for example, that production lines can be
easily changed, or that the system can cope with individual
requests even for the improvement of products, or for custom-
made products. Current manufacturing systems cannot satisfy
these requirements. To satisfy the requirements, the hierarchical
systems used in previous manufacturing systems have not been
enough because the systems cannot deal effectively with
unexpected situations. Moreover, a lot of software modules must
be modified when the system is rebuilt to meet the latest
requirements. In other words, current hierarchical manufacturing
systems have a rather “stiff” structure.

To achieve flexibility in manufacturing systems, the concept of an
autonomous decentralized system is one prospective approach.
We introduce some agents that work autonomously in the system
to build an autonomous decentralized type of manufacturing
system. To satisfy the requirement of constructing flexible
systems, we have established the basic concept that information
on a target product or work (for example, a procedure to provide
product or process data on a product) is attached to the target
work and moves with the work. The work is done through
direction from the work side instead of central control mechanism
side, therefore some central control mechanisms can be removed
from the system.

To demonstrate or verify the validity of our idea, we developed an
experimental machinery control system[2] for the Shape
Deposition Manufacturing (SDM) Laboratory[3] of the Robotics
Institute at Carnegie Mellon University (CMU).

We will explain our basic concept and system design in Section 2.
In Section 3, we will present the design and implementation of the
prototype system at CMU. Section 4 discusses flexibility of our
proposed system and the prototype system. Then, we will compare
our work with some related work and conclude this paper with
future work based on lessons from the prototype system.

2. System Design
2.1 Basic Concept
To realize flexible manufacturing systems, we propose a flat
architecture manufacturing system using agents rather than
hierarchical systems. The following is our basic concept for the
system. An agent is generated for each planned product, and we
call these agents "product agents". At the same time, we create an
agent for every machine tool or processing device, and we call
these agents "machine agents". The machine agents are abstraction
for each tool or device. We give the product agents the procedures
to make the product in the charge of the product agent.

According to any given order of production steps, the product
agent selects an appropriate machine tool and directs the machine
tool or controller on how to process the product and lets the
machine tool start processing. Actually, the product agents direct
the machine agent in charge of the machine tool, and the machine
agent controls the controllers or devices of the tool.

The product agent acts autonomously by understanding system
status and deals effectively and dynamically with the situations,
and completes the product in charge. The agents may negotiate
with other agents if necessary.

To realize the concept described above, we design the product
agents to be mobile agents and the machine agents to be stationary
agents. Machine agents run on controllers which control machine
tools or on computers connected to the controllers. On the other
hand, product agents are mobile agents and move to the computer
where the target machine agent is running following the
movement of the target product or work. After moving to the
target computer, the product agent sends a process request to the
machine agent, and waits until the machine agent makes
notification of the end of the process.

In this proposed architecture, process directions are usually sent
from product agents. Focusing on processing or manufacturing
products, there is no centralized control mechanism, and the
proposed system becomes a flat architecture. Therefore, when the
number of products or machine tools increases, a concentration in
the load or messages to the central mechanism may occur in
traditional hierarchical systems. But we can avoid such
concentration in the proposed architecture.

2.2 Software Architecture
We introduce two software modules other than two agents
described above. So, the proposed system uses up to four software
modules involving the following:

• Product Agents

• Machine Agents

• Management Agents

• User interface program

The relationships between the software modules are shown in
Fig.1. We will explain each module in the following sections.

Product Agent

Machine Agent

Management
Agent

Controller or
Machine Tool

User Interface
User Direction

Status

Status
Process historyResult

Process Request
Function Query

Results
Function

Control

Status
Process history

 Status
Process history

Status
Process history

Fig. 1 Software Architecture

2.2.1 Product Agents
A product agent moves in computers or controllers following the
movement of the target product. The product agent has a work
order called a “recipe” and processes the product according to the
recipe. Product agents have the responsibility to finish processing
the target products.

A pair of { function name, command } is written on each line
of the recipe. A product agent can complete manufacturing by
processing the recipe line by line. The function name shows the
name of the work process that each machine tool can provide. For
example, “WASH” is the function name for the washing machine.
The command shows the actual processing directions to the
machine tool. The product agents search which machine tool can
process the next recipe by sending messages which include the
function name in the recipe as the search key. Then, the product
agents select a machine agent among the candidates and direct the
process specified in the command. Actually, the machine agents
receive and reply to requests for selection or processing instead of
the machine tools themselves. The selection process for the target
machine tool or machine agent will be explained in detail in 2.3.

Product agents can monopolize one or more machine agents for
exclusive control of using the machine tools. Exclusive control is
performed by obtaining the access right to the machine agent. The
product agent can have one or more access rights simultaneously.
Only after a product agent gets the access rights for the target
machine agents, the product agent send a request to the machine
agent to carry out the process.

2.2.2 Machine Agent
Each machine agent corresponds to one machine tool. The
machine agent has the responsibility to control a machine tool and
grasps the status of the machine tool. The machine agent has the
name of the machine in charge (e.g., CNC, WASH) as a function
name. Several machine agents may have the same function name,
for example, there are a couple of machine tools that are of the
same type. The function names of the machine agents are
specified in the recipe as explained before.

The machine agent can be monopolized simultaneously by one
product agent at most and does the work sent from the product
agent. The machine agent controls machine tools or controllers
connected to the computer on which the machine agent is running
and gets the status of the machine tools.

A machine agent can give an access right to at most one product
agent for exclusive control to use the machine tool. Machine
agents control the machine tool in charge by receiving directions
from the product agent having the access right to the machine

agent only. Messages between the product agent and the machine
agent are shown in Fig. 2.

Product Agent Machine Agent

Search target Machine Agent
Request access right

Reply for the request

Get the access right
Move to the computer

on which the target
Machine Agent is running

Send recipe

Accept the recipe
Process the recipe
on the target work

Finish the recipe

Request processing data

Reply for the request

Fig. 2 Messages between Product Agent and Machine Agent

While the machine agent gives an access right to a product agent,
new requests from other product agents are queued. After the
product agent returns the access right, the machine agent gives a
new access right by selecting one new product agent in the request
queue. Product agents may send an access-right request to
machine agents with priority. The priority is assigned depending
on some criteria, for example, slack time to deadline of each
product. In cases where one or more requests are queued on the
machine agent, the machine agent selects one product agent with
the highest priority request.

2.2.3 Management Agents
The management agent starts product agents and machine agents.
Usually, machine agents are created at system startup, and product
agents are created at the beginning of the actual processing of the
target product. Product agents are created by system operators in
the order of the production sequence.

Management agents receive production, quality, status data, or
process histories sent from product and machine agents and save
the data in persistent or nonvolatile storage. Management agents
may also monitor the activities of product and machine agents.

2.2.4 User Interface Program
According to instructions made by an operator, the user interface
program sends the operator’s instructions to the product agents
and machine agents. The user interface program can also display
the states of each agent and each machine tool.

2.3 Selection of Target Machine Tool
We describe the procedure of selecting machine agents by product
agents. This procedure is a kind of contract net. A product agent
picks up the first line of the recipe. The product agent sends the
function name and command in the recipe to the machine agents
to search for which machine tools can process that recipe line.
This message is sent by a broadcast message to all machine agents,
or through group communications or by a multicast message to a
specified machine group. Machine groups consist of machine
agents having the same function name. Group communications is
preferable in cases where there are a lot of machine tools, or in
cases where scalability is required.

A machine agent that receives messages from the product agent
decides whether the machine agent can accept the process request
from the product agent. As a result, when the machine agent can
do the requested process, the machine agent sends a reply message
to the product agent that the machine agent can accept the request.

After the product agent receives the reply message, the product
agent selects one target machine agent, that is, the target machine
tool, among the machine agents which send the reply messages.
Each product agent can have its own criteria to select the target
machine agent. For example, a product agent can select the
machine agent that sends the quickest reply message. The other
product agent may consider the performance or availability of
machine tools to select the target machine agent.

For machine availability, when a machine agent sends a reply
message to a product agent, the machine agent can include a
message whether or not the machine is being used at present. If
the machine is not being used at present because it is being used
for another process, the machine agent will apply a calculation
using the presumed process time and find when the process can be
started. This will enable the product agent to select the machine
by which the process will start in as much as is possible. In
addition, the product agent can select a machine agent enabling
the recipe process to complete the most quickly.

After selecting the target machine agent, the product agent gets
the access right first, and then sends an actual process request to
the machine agent as shown in Fig.2.

3. Prototype System
To verify our concept and architecture, we developed a prototype
system for the SDM Laboratory at CMU using the proposed
architecture. In this section, we will first give a brief overview of
the SDM Laboratory. Then, we will describe the hardware
architecture and software implementation of the target system.

3.1 SDM Laboratory
The Shape Deposition Manufacturing (SDM) laboratory belongs
to the Robotics Institute at Carnegie Mellon University. In SDM,
the growing parts are built on pallets which are transferred from
station-to-station using a robotic palletizing system. Each station
has a pallet receiver mechanism. The parts-transfer robot places
the pallet on the receiver which locates and clamps the pallet in
place. The current SDM test-bed facility consists of four
processing stations: CNC milling, deposition, shot-peening and
cleaning. The deposition station also uses robotics to integrate
multiple deposition processes.

3.2 Hardware Architecture
This system uses four main programmable controllers and two
extra assistant controller stations. These main controllers are
connected to industrial PCs (iPCs). The iPCs are connected to
each other via ethernet. Each controller is also connected to the
processing machines by a serial line. Each iPC has a Pentium
133MHz processor and 32MB memory.

There is also a supervisory or administrative PC used by an
operator. The operator uses the supervisory PC to watch the
system status and operates the machine tools. This supervisory PC
has a Pentium Pro 200MHz processor and 64MB memory. Fig.3
shows the hardware architecture of the system.

Suvervisory
PC

Industrial PC #1 Industrial PC #2 Industrial PC #4Industrial PC #3

Controller #1 Controller #2 Controller #3 Controller #4

Robot Arm
Shot Peening

CNC Washer
GMF Robot

Deposit

Ethernet(Laboratory Network)

Ethernet(Campus Network)

Fig. 3 Hardware Architecture

Each PC runs Windows NT 4.0. The local network of this system
is separated from the CMU campus network in order to avoid
outside influences while communicating between individual nodes
in this system.

3.3 Implementation
We used Java as the implementation language and used native
methods (JNI) to control the serial ports. We use aglets (alpha
5)[4,5] developed by IBM for movement of the agents and for
communication between them. We also used HORB[6,7] for
communication between the user interface and the management
agent. JDK 1.1 was used at first for the Java VM environment, but
a Symantec JIT Compiler is now being used because of its
performance. The number of source code lines, excluding
comments, is about 20,000. The number of classes excluding
inner classes is 117. We used NTP on each PC in order to
synchronize their clocks, and the supervisory PC worked as an
NTP server.

Taking the system size into consideration, we selected broadcast
messages for the product agents, aiming to search for the target
machine agent. We did not take scalability into consideration in
our prototype system. This is because the target system is for the
closed laboratory and the system is small enough thanks to
broadcast messages.

3.4 Availability
To increase availability in this prototype system, we used “I’m
alive” messages. Both the product and machine agents sent their
statuses to the management agent as “I’m alive” messages or
heartbeat messages. The management agent watched the locations
and statuses of both the product and machine agents, and also
preserved the agents' logs on disks. In cases where the product or
machine agent died, the management agent notified an operator,
and started the product agent again, if necessary, after approval by
the operator. But machine agents could not always recover from
faults because we could not get the necessary information on the
hardware status, or we could not redo the same process in the case
of a machinery process.

3.5 Basic Performance
We show some performance results of our proposed system by
implementing the prototype system. One evaluation concerns the
performance of the movement of agents, and the other evaluation
is related to some system performance.

These measurements were performed not in the actual prototype
system, but in our experimental environment, because the actual
system has already been in practical use. It does not influence the
results to use our experimental environment rather than an actual
system because we have to measure not the actual system
performance, including the mechanical process time, but the
computer system performance.

We used two PCs for measurements, one had a Pentium
Pro(200MHz) processor and 64MB memory, the other PC had a
Pentium(166MHz) processor and 48MB memory, and each
machine was connected via ethernet. The operating system we
used in these measurements was Windows NT 4.0. The network
was isolated to avoid impact or interruptions from external
networks. We used two Java execution environments for these
measurements. One is Sun Microsystems JDK 1.1.5; the other is
Symantec JIT Ver 3.0 (Visual Cafe 2.1).

3.5.1 Movements of agents
This section shows the amount of time for agents to move from
one machine to another. The results are shown in Table 1.

Table. 1 Execution result of agent movements

Java VM JDK1.1.5 JIT Ver.3.0

Round trip time 0.384(sec) 0.245(sec)

Each result in the table shows the round-trip time (in seconds)
between two computers without class loading. The smaller
number shows that its movement is faster. The number is an
average of 500 operations. Each mobile agent is several hundred
bytes in size.

This result indicates that the time it takes for an agent to move is
faster than 1ms, and this time doesn't cause problems in the
manufacturing process, because material handling and transfer
time is usually much longer than the elapsed time for agent
movement. We could not find any differences caused by class
loading.

3.5.2 Execution of a recipe
Concerning the performance of recipe execution, we measured the
amount of time for some lines of the recipe to execute. This means
the time spent in the computers to process target work with the
given recipe. The recipe for this measurement is:

1) PLACE WASH (Put the pallet on the washer)

2) RUN_FILE WASH WASH (Wash the pallet in the washer)

3) PICK WASH (Pick up the pallet from the washer)

We measured the execution time it took to process this recipe. We
used machine 1 shown in Table 2.

Table. 2 Execution results of recipe

Java VM enviornent JDK1.1.5 JIT Ver.3.0

Execution Time 27.78(sec) 16.35(sec)

4. Discussion
4.1 Flexibility of the Proposed System
Flexibility will be one of the most important issues to overcome in
future manufacturing systems. Our proposed system provides the
flexibility essential to future systems. We discuss the following
requirements for the concerned flexibility.

• Changing system configuration

• Producing variable-type products

• Changing production order of products

We first describe the flexibility in changing the system
configuration. In this system, product agents dynamically select a
machine to process the next line of the recipe by using the
function name in the line. In the prototype system, a product agent
searches which machine agent can process a specified recipe by
sending a broadcast message, while machine agents reply with
their recipe processing availability to the product agent.

The product agent decides which machine to use according to the
results of the search. Therefore, even in cases where some new
machines are added, or some machines are taken out of service for
maintenance or other reasons, product agents can select a suitable
machine adapting to changes in the system configuration or the
machines’ operating status. Product agents need not know which
machines are running; they can decide which machine to use by
relying on only a reply message from the machine agents.
Because the product agents and the machine agents work
autonomously, they can change their behavior adapting the system
configurations by themselves. The whole system can continue its
activity coping with the configuration changes in the system in
spite of no central control mechanism. In other words, we can add
some new machines like Plug-and-Play flavor. In a case where the
system has a central control mechanism, changes in the
configuration or current status must be sent to the central control
mechanism.

Next, we discuss the flexibility from changes in the target product.
Each product agent has recipes (procedures) on how to produce
the target product. So, it is easy to produce mixed and different
types of products concurrently by changing only a recipe. We can
build a system enabling the production of different types of
products by giving a different recipe to each product agent
accordingly. Changing recipes also makes a mixture of products
with special required specifications.

This might make it possible to produce variable-type products in
the central control mechanism. However, if the system
configuration changes, or the types of products increase, an
adjustment is required in the whole system. For this, the central
mechanism needs to send a lot of messages to indicate the
procedure changes to each controller. Whereas in our proposed
system, each agent can act autonomously, the system enables
variable types and variable amounts of production and can reduce
the number of messages in the whole system.

Then, we discuss the flexibility involving changes in the order of
production. In this system, each target product is mapped on each
product agent. This can help complete urgent work or urgently
needed products (with imminent delivery dates) quickly by
changing the production order of the work through negotiation
with the product agent that is in charge of the urgent work with
other agents. In our proposed system, each product agent has a

priority corresponding to the urgency of its handling product, and
sends its priority to a machine agent with a monopolizing request.
A machine agent selects a product agent as the next one having
the highest priorities. This means a product agent whose priority
is higher can take the access rights over product agents having a
lower priority.

We evaluate the developed prototype system from the point of the
required items for flexibility discussed above. Concerning
changing system configuration, we can achieve this requirement
to select the machine agents dynamically by the product agents.
We can also change target products easily by changing a recipe
given to the product agent, therefore we can produce variable-type
products. On the other hand, concerning changing production
order of products, we achieved this requirement to some extent in
the prototype system by controlling request’s priority, but we have
to consider from other points of view.

4.2 System Architecture
When we consider a future manufacturing system with enough
flexibility, it is required that there is no central management and
that each subsystem work autonomously to avoid concentrating
messages at some central mechanism. In this system, each product
agent and machine agent can work autonomously and the system
can continue its activities even if the management agent does not
run. The product agents and the machine agents are key
components in this system.

Our approach to using mobile agents for product agents is useful
to avoid concentrating messages at several computers. If product
agents are not mobile, they are collected on a specific computer to
work, and if any excess load makes that computer overloaded,
scalability will lack in the system architecture. In addition, if the
specific computer on which the product agents work stops, the
whole system will be affected.

A management agent is the only additional part to process target
products or work and is for increasing dependability. The way
adapted in the prototype system to increase dependability, that is,
introducing the management agent, does not have scalability. In
the case of a much larger system, other approaches, for example,
introducing another messaging mechanism, are needed. If we use
the agents in industrial fields, it is an important issue to ensure the
activities of the agent’s data, and this system ensures such
requirements to some extent. However, in the practical use of the
system, computer information has close ties to the status of the
working product. Therefore, it is very difficult to restart the agents
automatically. Confirmation by the system operator must be
required.

5. Related Work
An approach that individual configuration element is considered
as an active entity is also appeared in the concept of Holonic
Manufacturing System[8], and an agent-oriented architecture for
Holonic Manufacturing System was proposed[9]. Also, an agent-
based approach for manufacturing system is proposed as in
YAMS[10]. However,[9] and [10] describe the application of a
multi-agent system in a conventional hierarchical control system.
What are more, those agent’s applications are used for scheduling.
We can find that other studies in which agents are applied to the
manufacturing or production system are focusing on scheduling in
most cases. Our work, on the other hand, is targeting practical
control fields rather than applying agents to the manufacturing

system for scheduling as in conventional studies. Our work in this
paper focuses on how to handle processing products and machine
tools in the agent-based system. From this point of view, our work
is a new approach to a manufacturing system.

 We are also proposing an autonomous decentralized system using
agents rather than applying multiagents in a conventional
hierarchical system. We believe that using this approach will
provide a future manufacturing or production system with
indispensable flexibility. We have not only proposed system
architecture, but also developed a prototype system and run the
system in practical use. We consider this application point of view
to be one of our advanced activities.

In addition to the above, we can find a product or work oriented
approach as in [11]. In [11], how to configure the system is not
proposed; only simulation results are achieved. Compared to this,
our system uses a concrete product oriented approach and
activates actual systems thereby solving how to process variable-
type products as well as how to handle machine tools in the
system.

6. Conclusion and Future Work
We described our basic concept of a machinery control system
using mobile agents in this paper. We also explained not only our
concept but also system or software architecture of the actual
prototype system. As a result of the above discussion, we showed
our proposed concept and architecture to be useful in building
flexible manufacturing systems. However, there are several
problems to solve in future work.

We have to give more intelligence to the agents to increase the
productivity or efficiency of the system. It is much better that the
product agents are able to select the best paths or machines to
satisfy objectives, for example, maximum productivity or no
missed deadlines for all products, negotiating with other agents or
avoiding deadlocks over some shared resources. The machine
agent sends a reply message as to whether the received recipe can
be processed or not in our prototype system. If the machine agent
can send additional information involving the presumed process
time as well as information of availability on machines, the
product agent could find a more efficient path. Some cooperation
with an external scheduling system is required in order to increase
productivity in the whole entire system. These features have not
yet been implemented in the prototype system. They are one of
our future subjects to be solved.

Avoiding deadlocks over shared resources is one of important
problems to solve because resource allocations are dynamically
performed in our proposed system. We have proposed deadlock
detection mechanism using some tokens.

Another important problem to solve is concerning dependability
of the system. In the prototype system, some watching mechanism
is implemented by using heartbeat signals. The product agent have
relation to a physical product or work, and the machine agents
also have relation to physical machine, so it would be one of the
most important problems to ensure the agents activities. In the
prototype system, we implemented the mechanism to increase
availability of the system in application level, however, if agent

platform could provide some mechanism, for example, check
pointing and roll back function , we would use that mechanism.

Moreover, as we verify our concept on a small experimental
system, we have to apply the proposed architecture to larger
systems to determine whether the architecture is practical for
actual systems.

7. ACKNOWLEDGMENTS
We would like to thank Prof. Lee Weiss and his laboratory’s
members for their support in building the prototype system in
CMU. We are also grateful to Mr. Akira Nagashima, Vice
President, and Mr. Tetuso Hoshi, General Manager, for giving us
the opportunity of this work.

8. REFERENCES
[1] K. Mori, “Application in Rapidly Changing

Environment,” IEEE Computer, vol.31, no.4, pp.42-
44, 1998.

[2] H. Wada, Y. Sakuraba, M. Negishi, T. Yamakawa, K.
Kubo, and Y. Kashiyama, “A Machinery Control
System Using Mobile Agents,” Proc. 4th International
Symposium on Autonomous Decentralized Systems,
pp.124-131, March 1999.

[3] Shape Deposition Manufacturing Laboratory Home
Page, http://www.cs.cmu.edu/~sdm.

[4] Aglets Software Development Kit Home Page,
http://www.trl.ibm.co.jp/aglets/index.html.

[5] D. Lange and M.Oshima, “Programming and
Deploying Java Mobil Agents with Aglets,” Addison-
Wesley, 1998.

[6] HORB Home Page, http://ring.etl.go.jp/openlab/horb.

[7] S. Hirano, “HORB: Distributed Execution of Java
Programs,” Worldwide Computing and Its
Applications'97, Springer Lecture Notes in Computer
Science 1274, pp29-42, 1997.

[8] D. Kriz, “Holonic Manufacturing Systems: Case Study
of an IMS Consortium,” http://hms.ifw.uni-
hannover.de/, 1995.

[9] S. Bussmann, “An Agent-Oriented Architecture for
Holonic Manufacturing Control,” Proc. First
International Workshop on IMS, pp.1-12, 1998.

[10] H.V.D. Parunak, B. Irish, J. Kindrich, and P. Lozo,
“Fractal Actors for Distributed Manufacturing
Control,” Proc. 2nd Conference on AI Applications,
pp.653-660, 1985.

[11] N. Gayed, D. Jarvis, and J. Jarvis, “A Strategy for the
Migration of Existing Manufacturing Systems to
Holonic Systems,'' Proc. IEEE Systems, Man, and
Cybernetics Conf., San Diego, Oct. 1998.

